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Abstract This study examines the seasonal prediction of western North Pacific [WNP) and East Asia land-
falling tropical cyclones (TCs) using the Geophysical Fluid Dynamics Laboratory(GFDL) Forecast-oriented
Low Ocean Resolution version of CM2.5 with Flux Adjustment (FLOR-FA) and finite-mixture-model (FMM)-
based statistical cluster analysis. Using the FMM-based cluster analysis, seven clusters are identified from
the historical and FLOR-FA-predicted TC tracks for the period 1980–2013. FLOR-FA has significant skill in
predicting year-to-year variations in the frequency of TCs within clusters 1 (recurving TCs) and 5 (straight-
moving TCs). By building Poisson regression models for each cluster using key predictors (i.e., sea surface
temperature, 500 hPa geopotential height, and zonal vertical wind shear), the predictive skill for almost all
the clusters at all initialization months improves with respect to the dynamic prediction. The prediction of
total WNP TC frequency made by combining hybrid predictions for each of the seven clusters in the hybrid
model shows skill higher than what achieved using the TC frequency directly from FLOR-FA initialized from
March to July. However, the hybrid predictions for total WNP TC frequency initialized from January to
February exhibit lower skill than FLOR-FA. The prediction of TC landfall over East Asia made by combining
the hybrid models of TC frequency in each cluster and its landfall rate over East Asia also outperforms
FLOR-FA for all initialization months January through July.

1. Introduction

Tropical cyclones (TCs) cause severe hazards and numerous fatalities to coastal and inland regions [e.g.,
Pielke, 1997; Pielke et al., 2008; Zhang et al., 2009]. The vast majority of the damage caused by TCs occurs
during or after landfall [e.g., Landsea et al., 1998; Powell and Houston, 1998]. An accurate and timely seasonal
forecasting of TC activity (e.g., frequency and landfall) is thus of great importance to both scientific com-
munities and governmental administration.

Over the recent decades, considerable attention has been paid to improve TC predictions based on statisti-
cal methods and dynamic models [e.g., Nicholls, 1979; Gray et al., 1993; Marks and Shay, 1998; Chan et al.,
2001; Fan and Wang, 2009; Vecchi et al., 2010, 2013, 2014; Villarini and Vecchi, 2013]. Statistical models have
been used to forecast TC occurrence frequency/genesis [e.g., Chan, 1995; Chan et al., 1998, 2001; Klotzbach,
2007; Wang et al., 2013; Zhang et al., 2015], track [e.g., J.-H. Kim et al., 2012; Zhang et al., 2013a], landfall [e.g.,
Goh and Chan, 2010; Zhang et al., 2013a,2013b], and intensity [e.g., Knaff et al., 2005; Zhang et al., 2013d] in
the western North Pacific (WNP). Scientists have widely used Poisson regression [e.g., Liu and Chan, 2003;
Chu and Zhao, 2007], Bayesian models [e.g., Chu et al., 2010; Lu et al., 2010], and multiple linear regression
models [Fan, 2007; Fan and Wang, 2009] to predict the occurrence and frequency of WNP TCs.

To complement statistical models, state-of-the-art climate models, including atmospheric general circula-
tion models (AGCMs) and coupled GCMs (CGCMs) have shown encouraging skill in seasonal forecasting of
TC frequency [e.g., Vitart et al., 2007; Smith et al., 2010; Zhao et al., 2010; Chen and Lin, 2011; Vecchi et al.,
2014; Camp et al., 2015], and landfall over East Asia [e.g., Sun and Ahn, 2011; Au-Yeung and Chan, 2012;
Huang and Chan, 2014; Tan et al., 2015]. Over the years, hybrid models combining dynamic and statistical
models, have proven highly skillful in the prediction of TCs in the North Atlantic and the WNP [e.g.,
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Klotzbach, 2007; Elsner et al., 2008; Vecchi et al., 2010; LaRow, 2013; Villarini and Vecchi, 2013; Li et al., 2013;
Vecchi et al., 2013, 2014; Kim et al., 2014]. Huang and Chan [2012] reported that the dynamically downscaled
forecasts of TC landfall over East Asia outperform the original CFS2 prediction with a correlation of 0.27 and
a RMSE of 3.72, while that for TC frequency is 0.55 with a leave-one-out cross-validation. Sun and Ahn [2011]
reported that the coupled climate model (PNU-CGCM) exhibited virtually no forecasting ability in predicting
6–9 month and 3–5-month leads for landfalling TCs over East Asia. Based on statistical relationships
between TC frequency/landfall and physical processes tied to dynamical models, the so-called hybrid
dynamical-statistical models have been capable of predicting seasonal TC activity over the North Atlantic
and the WNP [e.g., Wang et al., 2009; Kim and Webster, 2010; Vecchi et al., 2010; Sun and Chen, 2011; Li et al.,
2013; Villarini and Vecchi, 2013; Vecchi et al., 2013; Kim et al., 2014; Vecchi and Villarini et al., 2014]. Hybrid
models take advantage of both statistical associations derived from the observations and dynamic models,
and environmental variables simulated by dynamic models to improve the skill of the prediction.

Cluster analysis is a useful method to group data based on some metrics (e.g., distance or similarity) and
has been widely applied to unravel inherent and relevant patterns from historical TC data [e.g., Camargo
et al., 2007a,2007b; Gaffney et al., 2007; Ramsay et al., 2011]. Seven clusters have been identified from the
historical TC tracks in the WNP [Camargo et al., 2007a,2007b; H.-S. Kim et al., 2012]. TCs from the same clus-
ter share similarity in moving direction, genesis, track shape, and landfall regions [Camargo et al.,
2007a,2007b; Kim et al., 2010]. If every single TC cluster is predictable, the basin total TC activity should also
be predictable. H.-S. Kim et al. [2012] applied the results of cluster analysis to predict seasonal TC track den-
sity in the WNP and showed encouraging performance. Choi et al. [2016] have used cluster analysis results
to predict the frequency of intense tropical cyclones in the WNP and North Atlantic. It is thus of broad scien-
tific and societal interest to examine whether we can improve seasonal predictions of WNP TC frequency
and East Asia landfall frequency by integrating the cluster analysis of TC tracks. The basic hypothesis is that
the development of prediction models for each cluster may lead to more skillful forecasts than what could
be attained by developing a single model that would have to work on all the clusters combined.

The Geophysical Fluid Dynamics Laboratory (GFDL) Forecast-oriented Low Ocean Resolution Version of
CM2.5 with Flux Adjustment (FLOR-FA) has been providing seasonal forecasts for regional hurricane activity
in the North Atlantic, midlatitude storm tracks and surface air temperature [Vecchi et al., 2014; Jia et al.,
2015; Yang et al., 2015]. Although FLOR-FA has some biases in predicting TC density in the WNP [Vecchi
et al., 2014], the prediction of TC frequency or landfall might be further improved by developing a hybrid
model integrating statistical relationships between observations and simulations. Murakami et al. [2016]
applied a hybrid model to predict North Atlantic TCs and showed that the hybrid model improves basin-
total and U.S. landfalling TC frequency. Therefore, given the promising results for the North Atlantic, it is of
significant interest to build a hybrid model for seasonal predictions of total WNP TC frequency and landfall
over East Asia, where most of wealth and people are accumulated along the coastal regions.

The objectives of this study are thus: (i) to assess the predictability of TC frequency and landfall over East
Asia with FLOR-FA; (ii) to unravel clusters from historical and simulated TC tracks using cluster analysis; and
(iii) to improve seasonal predictions of total WNP TC frequency and landfall over East Asia using a combina-
tion of statistical methods and dynamic models. This study would advance our understanding of TC activity
and landfall over East Asia, providing basic information that could lead to an improved preparedness, man-
agement and mitigation of TC-related hazards in Asia.

The remainder of this paper is organized as follows. Section 2 presents the data and methodology, followed
by a description of the results of the analyses. Section 4 summarizes the main points and concludes the
paper.

2. Data and Methodology

2.1. Data
TC data are obtained from International Best Track Archive for Climate Stewardship (IBTrACS) [Knapp et al.,
2010] for the period of 1980–2013. Monthly estimates of sea surface temperature (SST) are taken from the
Met Office Hadley Centre HadSST3.1.1.0 [Kennedy et al., 2011]. Following previous studies [Wu et al., 2004;
Zhang et al., 2012], we consider as landfalling TC over East Asia a storm that makes landfall over the East
Asian coast shown in Figure 1.
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2.2. Dynamic Model
We use a state-of-the-art high-resolution coupled climate model, the Forecast-oriented Low Ocean Resolu-
tion (FLOR) configuration of GFDL’s Coupled Model version 2.5 (CM2.5) [Delworth et al. 2012]. FLOR is built
by a combination of oceanic and ice components derived from GFDL Coupled Model version 2.1 (CM2.1)
[Delworth et al., 2006], and the atmosphere and land components of CM2.5 [Delworth et al., 2012]. The
atmosphere and land models are identical to those in CM2.5, and have a spatial resolution of approximately
50 km 3 50 km [Delworth et al. 2012]. The ocean model of CM2.5 has a 0.258 3 0.258 spatial resolution
[Delworth et al. 2012] while the ocean and sea ice components of FLOR are directly taken from CM2.1 at 18

3 18 spatial resolution, with the exception of a refinement of the grid in the deep tropics (from 108S to
108N) to approximately 1/38 in meridional direction. CM2.1 has been widely used for climate research, pre-
dictions and projections for around a decade. The ocean component of FLOR has been slightly changed
compared with CM2.1 by incorporating a newer and higher order advection scheme, a parameterization for
eddies [Farneti et al., 2010] and a more realistic representation of the solar absorption by the ocean and a
biharmonic horizontal viscosity scheme. Most of the computing expenses with FLOR are spent in the atmos-
phere and land components. A detailed description of the FLOR model is documented in Vecchi et al. [2014]
and references therein.

We use here a version of FLOR in which the model’s momentum, enthalpy and freshwater fluxes from
atmosphere to ocean are adjusted to bring the model’s long-term climatology of SST and surface wind
stress closer to observations—this is known as the ‘‘flux adjusted’’ version of FLOR, or FLOR-FA [Vecchi et al.
2014; Delworth et al., 2015; Yang et al., 2015]. Previous studies have demonstrated more realistic simulation
of TC genesis and density in the North Atlantic and the WNP with FLOR-FA than FLOR [e.g., Vecchi et al.
2014; Krishnamurthy et al. 2016].

The seasonal predictions are initialized using the GFDL’s ensemble coupled data assimilation (ECDA) system,
which utilizes an ensemble-based filtering algorithm to the CM2.1 (for more details on ECDA, consult Zhang
et al. [2007] and Zhang and Rosati [2010]). The ECDA covers the period from 1960 to the present and is
being updated monthly for GFDL’s seasonal-to-decadal experimental forecasts [Yang et al., 2012, 2015;
Vecchi et al., 2011, 2013, 2014; Jia et al., 2014; Msadek et al., 2014a,2014b]. A comprehensive assessment of
the 1960–2010 oceanic variability in the latest version of the ECDA can be found in Chang et al. [2013]. It
should be noted that the initial conditions of different components of FLOR are taken from different avail-
able sources at GFDL because the data assimilation system for FLOR is still under development [Vecchi et al.
2014]. The initial conditions for the ocean and ice components of the FLOR hindcasts are from the ECDA,
whereas the initial conditions for the atmosphere and land components are taken from FLOR atmosphere-
only simulations with prescribed observed SSTs [Vecchi et al. 2014]. The 12 member ensemble seasonal
hindcasts are initialized on the 1st day of every month from 1980 to 2014 and integrated for 12 months

Figure 1. The East Asian coast (blue) which is used to define TC landfalls over East Asia.

Journal of Advances in Modeling Earth Systems 10.1002/2015MS000607

ZHANG ET AL. SEASONAL FORECAST OF WNP TCS 540



with temporally varying anthropogenic and natural forcing [Vecchi et al. 2014]. The seasonal hindcast
anomalies for each variable were obtained by subtracting the lead-time-dependent climatology from the
hindcasts.

2.3. Cluster Analysis Method
We use finite-mixture-model (FMM)-based cluster analysis to group TC tracks from both observations and 12
ensemble seasonal forecasting experiments. This method has been widely applied to TC tracks in various
ocean basins [Camargo et al., 2007a,2007b,2008; Zhang et al., 2013c] and it provides a rigorous probabilistic
framework to cluster TC tracks of various shapes and lengths. This algorithm employs mixed polynomial
regression models (i.e., curves) to fit the geographical ‘‘shape’’ of TC tracks and model a TC’s longitudinal and
latitudinal positions versus time [Gaffney and Smyth, 1999; Gaffney, 2004; Camargo et al., 2007a,2007b; Zhang
et al., 2013c].Assuming that there are K clusters in the TC tracks represented by K different regression mod-
els, each TC track is represented by one of K different regression models with its own shape parameters. The
primary objectives of such modeling strategy are to estimate and learn the parameters of all K models from
TC tracks, and to infer to which of the K regression models each TC track most likely belongs. Given the
FMM, each TC track is assigned to the mixture component (i.e., the cluster) that most probably generates the
track and the assigned cluster of the TC track has the highest posterior probability. The Expectation Maximi-
zation (EM) algorithm is used to estimate these model parameters [McLachlan and Krishnan, 1997].

The details of the FMM-based cluster analysis are described as follows. Assuming that p(x;h) is a d-
dimensional probability density function depending on a multidimensional parameter vector h and S(h) an
multidimensional cumulative distribution function [Camargo et al., 2007a,2007b]. Then

f xð Þ5
ð

p x; hð ÞdS hð Þ (1)

where S(h) is the mixing distribution; Si(hi) is discrete and probability is assigned to only a finite number of
points (hi; i51, . . .,k). The finite mixture model can be calculated by summing up all the discrete points to
replace the integral in equation (1):

f xð Þ5
Xc

i51

Si hið Þ � p x; hið Þ; (2)

In this study, the model is constructed following Camargo et al. [2007a,2007b]

yi5 Tib1ei ; ei � N 0;
X

k

� �
; (3)

P yi j Tið Þ5N Tib;
X

k

� �
; (4)

where
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� . .
.

�
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0
BBB@

1
CCCA; (5)

is the regression matrix with an n3p dimension; N denotes normal distribution; b represents the regres-
sion coefficients, yi is the ith TC track having n spatial points (i.e., observations with latitude and longitude),
ei denotes an ni 3 2 matrix of multivariate Gaussian noise with zero mean and 2 3 2 covariance matrixP

kwith the diagonal elements r2
k1and r2

k2.

The conditional probability density for the ith TC track on the membership of the kth cluster, is defined as

p yijTi; hkð Þ5f yijTibk;
X
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����Xk
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exp 2
1
2
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X21

k
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" #0( )

; (6)

where hk 5 bk;
P

k

� �
, and tr denotes the trace of a matrix.

We can obtain the regression mixture model with K clusters
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p yijTi; /ð Þ5
XK

k

ak pk yijTi; hkð Þ5
XK

k

ak fk yijTibk;
X

k

� �
; (7)

where ak denotes the proportion of a TC track belonging to the kth cluster with the constraint that
P

k ak51
and / represents the set of mixture parameters ak ; bk; and

P
k

� �
.

If the complete set of n TC tracks are denoted as Y5 [y1, . . ., yn] and the set of measurement times as T5

[t1, . . ., tn], the full probability density of Y given T is shown as:

p YjT ;/ð Þ5
Yn

i

XK

k

akfk yijTibk;

X
k

� �
: (8)

The estimation of the parameters for the model are obtained by maximizing likelihood method. One of the
K models with which each TC track is most probably associated can be inferred as soon as the model is
properly trained.

The EM algorithm finds the local maximum likelihood through iterative estimations. The E-step and M-step
form the EM algorithm. In E-step, we calculate the membership probability that TC track i belongs to cluster
k as follows:

wik5
ak fk yijTibk ;

P
k

� �
PK

j
aj fj yijTibj;

P
j

� � : (9)

Note that wik denotes the ratio of the likelihood of the ith TC trajectory under the kth cluster to the total
likelihood of the ith TC track under all clusters. The wik5 wik Ini , where Ini is an ni vector of ones.
Wk 5 diag(w01k ; . . . ; w0nk ) represents an N 3 N diagonal matrix. In the M-step, Wk is used to calculate the
mixture parameters. The calculating process is similar to the weighted least squares commonly used in
regression analysis. The estimated parameters are

b̂k 5 X’WkX
� �21

X0WkY;

P̂
k 5

Y2Xb̂k

� �0
Wk Y2Xb̂k

� �
Xn

i

wik

;

âk 5
1
n

Xn

i

wik :

(10)

The EM algorithm performs iteratively the E and M steps until convergence, which is reached when the ratio
of the incremental improvement in log-likelihood to the initial incremental improvement during the second
iteration drops below a certain threshold (e.g., 1 3 1026). The EM algorithm randomly chooses a set of
membership weights Wk and implement the M step. We use the solution with the highest likelihood
obtained from 100 starts of the EM algorithm.

2.4. Poisson Regression Model
Poisson regression model has been widely used to analyze the probability for the occurrence of rare events
[e.g., hurricanes, tornados, and epidemics; e.g., Elsner and Schmertmann, 1993; Elsner and Jagger, 2006;
Villarini et al., 2010; Wilks, 2011].

P Yi5yð Þ5 ly
i e2li

y!
; y50; 1; 2 . . .1 (11)

where log lið Þ5b01
P

j bjxij.

If Y follows a Poisson distribution, the logarithm of the expected number of landfalling/WNP TC occurrence mi,
can be modeled as a linear combination of the predictors xij, with j being the specified predictor during the
year i; bj is the corresponding Poisson regression coefficient, b0 the intercept, and y the observed count of
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landfalling/WNP TC frequency. In a Poisson model, the variance is equal to the mean. In this study, we assume
that the Poisson random variable Yi (i.e., the true number of TC frequency in the ith year) is independent from
year to year and TC geneses are independent of one another in a specified year. This study trains the Poisson
regression model with the observed total WNP TC frequency/TC landfall frequency and simulated large-scale
circulation variables and then feed the trained model with the forecasted large-scale key parameters such as
sea surface temperature (SST), 500 hPa geopotential height (Z500), vertical wind shear (VWS,jU2002U850j,
U200 and 850 denote zonal wind at 200 and 850 hPa), and 850 hPa relative humidity (RH850), respectively.

2.5. TC Landfall Rate
TC landfall rate (ratio) is defined as the ratio of TC landfall frequency to the total WNP TC frequency [e.g.,
Villarini et al., 2012]. The complexity of TC landfall rate results from its dependence on both total TC and
landfall frequency. This study focuses on the prediction of landfall frequency over East Asia, which can be
obtained by summing up the landfall frequency over East Asia of the seven clusters.

Li 5
X7

j51

lijsj; (12)
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Figure 2. (top) The correlation and (bottom) root mean square error between the observed and hind-casted TC frequencies in the WNP
during peak season (July–October, JASO) for the initialization months from January to July (JFMAMJJ) using FLOR-FA. (top) The thick-
dashed black line represents 0.05 level of significance.
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where Li denotes the frequency of TC landfall over East Asia in the ith year, lij the estimated TC frequency
for cluster j in ith year using the hybrid models, and sj the landfall rate for cluster j.

2.6. TC Tracker
The tracker is developed to track TCs from 6 h climate simulations. This tracker has also been employed in
Zhang et al. [2016a,2007] and Murakami et al. [2015]. The tracking processes are based on key atmospheric
parameters such as air temperature, sea level pressure (SLP), and 10 m wind fields. The tracking procedures
[Murakami et al., 2015; Zhang et al., 2016a,2016b] are described as follows.

(a) TC Density Init Jan with FLOR−FA
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(b) TC Density Init Feb with FLOR−FA
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(c) TC Density Init Mar with FLOR−FA
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(d) TC Density Init Apr with FLOR−FA
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(h) TC Density (IBTrACS)
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Figure 3. (a–g) The hind-casted TC track density (unit: times) with FLOR-FA initialized from January to July and (h) observed TC track
density in the WNP for the period 1980–2013. The hind-casted TC track density is averaged over 12-ensemble members.
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1. Local minima are found from the SLP field. The spatial locations of the centers are adjusted by fitting a
biquadratic function to the SLP.

2. Closed contours at an interval of 2 hPa (dp) are found around every single SLP low center. The Kth con-
tour is marked as the contiguous region surrounding a low central pressure P with SLP lower than dp 3

K 1 P, detected by a ‘‘flood fill’’ algorithm. The contours are not necessarily circular. A maximum radius of
3000 km are searched from every single candidate low pressure center.

3. If closed contours are identified by the algorithm, the low is considered as a TC center. The tracker
attempts to detect all closed contours surrounding the low center within certain distances from the low

(a) TC Genesis Init Jan with FLOR−FA
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(b) TC Genesis Init Feb with FLOR−FA

80E 100E 120E 140E 160E 180 160W

20 N

40 N

60 N

(c) TC Genesis Init Mar with FLOR−FA
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Figure 4. (a–g) The hind-casted TC genesis density (from July to October, unit: times) with FLOR-FA initialized from January to July and (h)
observed TC genesis density in the WNP for the period 1980–2013.The hind-casted TC genesis density is averaged over 12 ensemble
members.
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center and without entering contours belonging to another low. The maximum 10 m wind within the set
of closed contours is taken as the maximum wind speed (MWS) of the TC at that time.

4. Warm cores are identified by similar searching processes: closed 18C contours are detected in the vicinity
of the maximum temperature anomaly (ta) within a TC’s identified contours, less or equal to one degree
from the low pressure center. This contour needs to have a radius smaller than 38. If such a warm core
cannot be found, it should not be considered as a warm-core low center.

5. TC centers are connected into a TC track by taking a low center at time T 2 dt, extrapolating the track for-
ward dt, and then seeking TCs within 750 km. It is noted that a deeper low pressure center has higher
priority of tracking.

6. The following criteria are further required to track the final TCs.

1. At least 72 h of total detection lifespan (not necessarily consecutive).
2. At least 48 cumulative (not necessarily consecutive) hours with a warm core.
3. At least 36 consecutive hours of a warm core with winds stronger than 17.5 ms21.
4. TC genesis should be located within equatorward of 408N.

3. Forecasting Results

3.1. Results From FLOR-FA
Figure 2 depicts the predictive skill of WNP TC frequency from July to October (JASO) in FLOR-FA during the
period 1980–2013. The predictions initialized in January, February, March, June, and July have statistically
significant correlations with observations, while those in April and May are not significant at the 5% level
(Figure 2a). Consistent with the correlation coefficients, the root mean square error (RMSE) between

(a) Mean Biases in TC Genesis FLOR−FA
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Figure 5. The (a) VWS (unit: ms21) and (b) TC genesis (unit: occurrences) biases in the WNP in FLOR-FA for the period 1980–2013 initialized
from January to July.
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predicted and observed TC fre-
quency is high in April and May
and low in the other initialization
months (Figure 2b). By compar-
ing the correlations and RMSE,
the predictive skill initialized in
January and February appears to
be slightly better than that initial-
ized in June and July (Figure 2).
The larger the RSME, the more
distinct the differences between
observed and predicted WNP TC
frequencies. The biases in the
WNP TC frequency are defined as
the differences between total
observed TCs and FLOR-
predicted TCs, with one value per
year for the period 1980–2013 for
the 12 ensemble members.

Figure 3 illustrates hind-casted
(initialized from January to July)
and observed TC track densities.
TCs in FLOR-FA are tracked from
the 6 hourly model output by
using the tracker developed at
GFDL as implemented in previous
studies and the tracker is
described in detail in subsection
2.5 [e.g., Murakami et al., 2015;
Zhang et al., 2016a,2016b]. TC
density is obtained by binning
the 6 hourly TC tracks in the WNP
into 5 3 58 grid boxes without
smoothing. The hind-casted TC
track density captures fundamen-
tal structures of observations for
all initialization months (Figure 3),
though there are positive biases
in TC density in the region 1208E–
1408E for the prediction with
FLOR-FA (Figure 3). The predicted
TC density for different initializa-
tion months shows similarity with
one another (Figure 3). The hind-
casted TC genesis density initial-

ized from January to July resembles observations in magnitude while the spatial patterns are different
because the high center of TC genesis density in FLOR-FA is shifted eastward in contrast to observations
(Figure 4). There is a high center of TC genesis in 1358E in the observations while the high center of TC gen-
esis in the FLOR-FA hindcasts is located at1458E (Figure 4), suggesting an eastward shift in the climatology
of TC genesis with FLOR-FA.

For further assessment, we find that the spatial pattern of biases of predicted VWS in the WNP are signifi-
cantly associated with that in the WNP TC frequency (Figure 5), suggesting that the VWS biases may play an
important role in explaining the WNP TC frequency biases. The scatter plot between VWS biases and TC
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Figure 6. The scatter plots of the biases in (a) VWS (unit: m/s), (b) U850 (unit: m/s), U200
(unit: m/s), and those in WNP TC frequency of FLOR-FA predictions. The blue circles rep-
resent the annual values, with the red lines representing the linear fit.
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frequency biases for 1980–2013 further supports this linkage (Figure 6a). However, the biases of other pre-
dicted variables (i.e., SST, Z500, and RH850) are not associated with those of WNP TC frequency (figure not
shown). Further analysis shows that the biases in predicted VWS come mainly from U850 but not from
U200 (Figures 6b and 6c). It is noted that the biases in predicted large-scale parameters (e.g., VWS) are cal-
culated by the differences in the climatology in FLOR-FA and observations. Therefore, large biases in a pre-
dicted parameter may not necessarily be related to low correlation coefficient between the observation and
prediction of this parameter. Moreover, the changes in VWS biases (Figure 7) are consistent with the
changes in correlation and RMSE of WNP TC frequency for different initialization months (Figure 2). In other
words, the VWS biases are large when predictions are initialized in April and May while they are small in the
other initialization months (Figure 7), further suggesting that the VWS biases may play an important role in
explaining the predictive skill of FLOR-FA for WNP TC frequency in different initialization months (Figure 2).

If we use large-scale parameters simulated by dynamic models to predict WNP TC frequency, the dynamic
model should have significant forecast skill in predicting these potential large-scale parameters, at least over
the selected spatial domains. Figure 8 illustrates the predictive skill of potential predictors (e.g., SST, Z500, VWS,
U850, and RH850) initialized in January which is represented by the correlation between observed and pre-
dicted values at each grid (Figure 8). Those potential variables have been widely used to predict WNP TC fre-
quency and are closely relevant to TC genesis [e.g., Chan et al., 2001; Kwon et al., 2007; Li et al., 2013]. The
spatial correlation maps initialized from February to July are provided in supporting information Figures S1–S6.
The spatial correlation map for SST covers the global ocean while those for atmospheric large-scale parameters
(e.g., VWS and Z500) are confined in the Pacific because remote SST anomalies can also modulate WNP TC fre-
quency [Zhan et al., 2010; Li et al., 2013; Yu et al., 2015]. The predictive skill of SST is high in most of the Pacific,
the Atlantic, and the Indian Oceans with FLOR-FA (Figure 8). Though the correlation maps between the pre-
dicted and observed potential predictors are similar when initialized from January to July (supporting informa-
tion Figures S1–S6), the predictive skill for the potential predictors using FLOR-FA is slightly higher when closer
to target month (JASO, Figure 8 and supporting information Figures S1–S6). The covariate Z500 is highly pre-
dictable, especially in the tropics (Figure 8); VWS is highly predictable in the Pacific region (Figure 8), while
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Figure 7. The VWS (unit: m/s) biases in the WNP in FLOR-FA for the period 1980–2013 initialized from January to July.
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U850 is marginally predictable in a small region of the Pacific and generally located in the tropics. The 850 hPa
relative humidity is, however, predictable only in limited regions in the WNP in FLOR-FA (Figure 8). FLOR-FA
cannot simulate well 850 hPa relative humidity, which is an important factor for TC genesis. The poor perform-
ance of FLOR-FA in simulating RH850 may limit its capability in forecasting WNP TC frequency. We therefore
select SST, Z500 and VWS as potential predictors for the hybrid model due to the high predictive skill with
dynamic-model predictions (FLOR-FA).
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Figure 8. The correlation between hind-casted (initialized in January) and observed potential predictors (SST, Z500, VWS, U850, and
RH850) during the peak season (JASO) to represent the predictive skill of the variables using FLOR-FA. Stippled black regions are those
with 0.05 level of significance.
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3.2. Results From the Hybrid Model
The FMM-based cluster analysis unravels hidden and important patterns from TC tracks, which are poten-
tially useful to predict basin-total TC frequency and landfall over East Asia. This subsection focuses on the
cluster analysis of historical and predicted TC tracks, predicting the identified seven clusters, and subse-
quently making skillful prediction for total WNP TC frequency and landfalls over East Asia.
3.2.1. Cluster Analysis
The FMM-based cluster analysis is used to identify seven clusters from the combined historical and pre-
dicted TC tracks (Figure 9). The reason for this cluster analysis is twofold: (1) it enables the evaluation of

Figure 9. The seven clusters of observed TC tracks and 12-ensemble hind-casted TC tracks with FLOR-FA of the seven predictions initial-
ized from January to July unraveled by finite-mixture-model-based cluster analysis. The black curves represent the hind-casted TC tracks
while the blue curves the observed TC tracks in the period 1980–2013. The thick green line or curves represent mean curves of the
clusters.
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predictability for each cluster with FLOR-FA; (2) it allows assessing whether the clusters in historical and pre-
dicted TC tracks are consistent. Because we have 12 ensemble members and 7 initialization months (i.e.,
January–July) for the predictions with FLOR-FA (12 3 7 3 34 years), the predicted TC tracks are much more
than the observed ones (1980–2013, 34 years) (Figure 9). Our cluster analysis results are overall consistent
with Camargo et al. [2007a]; there are four straight-moving and three recurving clusters in Camargo et al.
[2007a] while there are three straight-moving and four recurving clusters in the present study (Figure 9).
The main difference is that we have one more recurving cluster (cluster 2 in Figure 9) than Camargo et al.
[2007a], which may arise from more TCs moving to extratropics in FLOR-FA. We speculate that more recurv-
ing TCs that move in the extra-tropics in FLOR-FA are associated with the eastward-shift TC genesis loca-
tions in FLOR-FA which has been documented in Vecchi et al. [2014]. Due to the eastward-shift TC genesis,
TCs have more chance to stay on the open seas. Most of TCs first move northwestward toward the
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Figure 10. TC geneses in 12-member forecasts with FLOR-FA initialized in January to July (black dots) and in the observations (blue dots).
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extratropics after they are formed due to Beta effect [Holland et al., 1983]. Given the eastward-shift geneses,
TCs tend to move into extratropics and recurve due to strong westerly in the midlatitudes.

Further analysis of the seven clusters includes their genesis locations, frequency (percentage), maximum
intensity, landfall frequency, and seasonality of TCs in each cluster in the ensemble forecasts of FLOR-FA
and observations following Daloz et al. [2015]. Figure 10 illustrates the TC geneses of seven clusters with
FLOR-FA in 12 members and 7 initial months and those in the observations. TC geneses in the observations
capture the characteristics of FLOR-FA well in the seven clusters (Figure 10). However, there is a marked
eastward shift in the TC geneses of FLOR-FA for almost all seven clusters (Figure 10), consistent with previ-
ous studies [e.g., Vecchi et al. 2014].

Table 1 shows the frequency (percentage), genesis locations, landfall frequency, and maximum intensity
in the seven clusters of FLOR-FA and observations, respectively. The climatological TC frequencies during
peak season (JASO) in clusters 4, 5, and 6 are similar between FLOR-FA and observations. There are
higher TC frequency in clusters 1 and 7 and lower TC frequency in cluster 2 in the hindcasts of FLOR-FA
than the observations. The climatology of TC genesis locations in FLOR-FA is basically consistent with
that in the observations, except for an eastward shift (Table 1), as also shown in Figure 10. The
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Figure 11. Seasonality of WNP TCs in (a) FLOR-FA and (b) the observations in the peak TC season (July–October, JASO).
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Table 1. The Number (Percentage) of TCs, Genesis Locations, Landfall Frequency Over East Asia and Average Maximum Intensity in Each Cluster in FLOR-FA and the Observations

CTL Data Set C1 C2 C3 C4 C5 C6 C7

No. of TC per year FLOR-FA 1.9 (11.7%) 2.7 (16.6%) 2.7 (16.5%) 3.0 (18.4%) 1.8 (11.0%) 2.1 (12.9%) 2.1 (12.9%)
OBS 0.6 (3.5%) 4.7 (27.2%) 4.2 (24.3%) 3.3 (19.1%) 1.6 (9.2%) 2.0 (11.6%) 0.9 (5.1%)

Genesis locations (Lon, Lat) FLOR-FA (176.4,13.2) (151.3,18.2) (128.9,16.6) (139.5,17.0) (134.1,12.4) (154.8,15.3) (152.3,13.5)
OBS (156.0,13.7) (145.6,19.2) (126.7,15.2) (138.3,16.1) (130.4,10.8) (152.0,14.0) (150.6,12.9)

Landfall (East Asia) FLOR-FA 0.3 0.9 2.4 2.3 1.7 1.2 1.3
OBS 0.3 1.6 3.9 2.5 1.5 0.7 0.8

Maximum intensity FLOR-FA 29.7 28.9 27.1 28.3 30.0 29.6 30.8
OBS 38.3 31.0 27.2 34.6 34.2 35.1 43.3
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Figure 12. Correlation and root mean square error of WNP TC frequency in observed and hind-casted seven clusters (i.e., C1, . . ., C7) pro-
duced by FLOR-FA initialized from January to July (bars with different colors). (top) The thick-dashed black line represents the 0.05 level of
significance.
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frequencies of TC landfalls over East Asia in FLOR-FA are similar to those in the observations except for
cluster 3 in which FLOR-FA has 1.5 landfalls more than the observations (Table 1). The climatology of
maximum intensity in FLOR-FA is lower than in the observations for all seven clusters (Table 1). Previous
studies have reported that weaker TCs in FLOR-FA are in part due to the lower spatial resolution, which
has been much improved in a high-resolution FLOR (HiFLOR) with 25 km spatial resolution of its atmos-
pheric component [e.g., Vecchi et al., 2014; Murakami et al., 2015; Zhang et al., 2016b]. The seasonality of
TCs in FLOR-FA are generally consistent with that in the observations (Figure 11). Clusters 1 and 7 of
FLOR-FA have more TCs than those in the observations during September and October, while clutsers 2
and 3 of FLOR-FA have less TCs than those in the observations during August and September (Figure
11). Therefore, the seven clusters in FLOR-FA are overall consistent with those in the observations in
terms of genesis locations, TC frequency (percentage), landfall frequency, maximum intensity, and sea-
sonality, though there is still inconsistency in some clusters. This lends credence to the application of
cluster analysis results using TCs from both the hindcasts of FLOR-FA and the observations to build a
hybrid model for seasonal forecasting.
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Figure 13. The prediction skill of the hybrid models based only on (a) VWS and (b) Z500 for different initialization months and clusters.
The domains for VWS or Z500 are selected such that the correlations between observed TC frequency and simulated values of VWS/Z500
are significant at the 5% level. The thick-dashed black lines in represent the 0.05 level of significance.
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The seven clusters capture fundamental characteristics of TC tracks in the WNP (Figure 9). The correla-
tions between observed and predicted WNP TC frequency are positive for each cluster in all initialization
months (Figure 12). For clusters 1 and 5, FLOR-FA shows relatively high skill for predicting WNP TC fre-
quency; most of the correlations between observed and predicted TC frequency in those clusters are sig-
nificant at the 0.05 level (Figure 12). However, the correlations for clusters 2, 3, 4, 6, and 7 fail to pass the
significance test at 0.05 level. Furthermore, the RSME between observed and predicted TC frequency for
clusters 1, 4, 5, and 7 are low (Figure 12). Cluster 2 has the highest RSME, though the correlation is rela-
tively high among the seven clusters. The high RMSE in cluster 2 (i.e., the northward-moving cluster) is
because there are three years (1984, 1988, 1989) in the observations with extremely high frequencies
(10, 12, and 10 TCs). However, the TCs of cluster 2 in FLOR-FA are much less than those in the observa-
tions in those 3 years, leading to high RMSE values. This indicates that cluster 2 is relatively difficult to be
predicted by FLOR-FA.
3.2.2. Prediction of Seven Clusters and Total WNP TC Frequency
To predict the frequency of TCs in each cluster, our strategy is to: (1) further select predictors for each clus-
ter, (2) select spatial domains for the predictors for each cluster, (3) build statistical relationship between
selected simulated large-scale variables (predictors: SST, Z500, and VWS) and observed TC frequency in
each cluster using Poisson regression models, and (4) infer the predicted TC frequency from the built statis-
tical relationship using simulated large-scale variables.

The spatial correlation maps (Figure 8 and supporting information Figures S1–S6) are considered as an
important factor to select the predictors for the hybrid model. SST is always selected because previous stud-
ies have demonstrated its importance in modulating the genesis, development, and track of WNP TCs. To
further select predictors in addition to SST for each cluster, we build hybrid models using a single predictor
(VWS/Z500) in the domains where the correlations between observed TC frequency and simulated large-
scale parameters are significant. Results show that VWS exhibits some skill for cluster 6 while Z500 works
well only for clusters 4, 5, and 6 (Figure 13). DelSole and Shukla [2009] reported that one may obtain artificial
skill if the regions without physical meanings are used to build seasonal forecasting models. Therefore, we
only select the regions with physical meanings from the literature for the predictors. We determine the spa-
tial domains for the predictors based on both geographical locations and physical meanings for each cluster
(Table 2). The candidate domains are first selected based on the spatial correlation between observed TC
frequency and large-scale parameters. In general, the spatial domains for VWS and Z500 should be located
in the Pacific, while those for SST do not necessarily have to be located in the Pacific because various stud-
ies have indicated that SST gradients and remote SST anomalies can influence TC frequency in the WNP

Table 2. The Domains (rectangle: lon1, lon2, lat1, lat2) Selected for SST, Z500, and VWS for Different Clusters

Cluster SST Z500 VWS

C1 [1208E 1458E 108N 208N]
[1638W 1338W 208S 108S]
[1608E 1508W 208N 408N]

None None

C2 [1308E 808W 108S 108N]
[608W 208W 108N 308N]

None None

C3 [508W 158W 508N 638N] None None
C4 [1308E 1558W 308N 508N]

[1608E 1308W 408S 88S]
[608W 108W 158N 608N]
[388E 1088E 508S 108S]

[1008E 180 308N 508N] None

C5 [1258E 1608W 208N 408N]
[1608E 1308W 408S 88S]
[908W 208W 108N 258N]
[388E 1088E 508S 108S]

[1408E 1408W 108N 458N] None

C6 [1358E 1458W 258N 558N]
[1558E 908W 158S 158N]
[1558E 1358W 358S 158S]
[1608W 908W 658S 408S]
[708W 108W 0 688N]
[388E 1108E 508S 108S]

[1008E 1108W 58N 608N] [1108E1408W 58N 408N]
[1658E1458W 58N 208N]
[1258E1608E 58N 158N]

C7 [1608E 908W 158S 158N]
[1808E 908W 658S 408S]
[1808E 908W 358S 208S]

None None
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[e.g., Zhan et al., 2010; Yu et al., 2015]. Previous studies have also indicated that SST in the Pacific [Wang and
Chan, 2002; Camargo and Sobel, 2005], the Indian [Du et al., 2010; Zhan et al., 2010], and the Atlantic [Huo
et al., 2015; Yu et al., 2015] Oceans can modulate WNP TC activity.

C1−SST

0 90E 180 90W

60S

30S

EQ

30N

60N
C1−Z500

90E 180E 90 W
EQ

30N

60N

C1−ZVWS

90E 180E 90 W
EQ

30N

60N

C2−SST

0 90E 180 90W

60S

30S

EQ

30N

60N
C2−Z500

90E 180E 90 W
EQ

30N

60N

C2−ZVWS

90E 180E 90 W
EQ

30N

60N

C3−SST

0 90E 180 90W

60S

30S

EQ

30N

60N
C3−Z500

90E 180E 90 W
EQ

30N

60N

C3−ZVWS

90E 180E 90 W
EQ

30N

60N

C4−SST

0 90E 180 90W

60S

30S

EQ

30N

60N
C4−Z500

90E 180E 90 W
EQ

30N

60N

C4−ZVWS

90E 180E 90 W
EQ

30N

60N

C5−SST

0 90E 180 90W

60S

30S

EQ

30N

60N
C5−Z500

90E 180E 90 W
EQ

30N

60N

C5−ZVWS

90E 180E 90 W
EQ

30N

60N

C6−SST

0 90E 180 90W

60S

30S

EQ

30N

60N
C6−Z500

90E 180E 90 W
EQ

30N

60N

C6−ZVWS

90E 180E 90 W
EQ

30N

60N

C7−SST

0 90E 180 90W

60S

30S

EQ

30N

60N
C7−Z500

90E 180E 90 W
EQ

30N

60N

C7−ZVWS

90E 180E 90 W
EQ

30N

60N

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

Figure 14. The spatial correlation domains (red rectangles) of the three predictors (SST, Z500, and VWS) for the seven clusters (C1,. . .,C7)
initialized from January to July. Stippled regions are those with 0.05 level of significance. The shading represents correlation coefficients
between observed TC and simulated variables.
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The candidate areas are added one by one, and only the rectangles that can add values to the prediction
skills are retained. For a predictor (e.g., SST), there may have several spatial domains with respect to a clus-
ter. In other words, after we select a rectangle for the predictor, a hybrid model is built based on average
predictor values in that rectangle (we add predictor values when the correlation coefficient in a grid is posi-
tive, and subtract the predictor value when the correlation coefficient in this grid is negative) as a predictor.
If the prediction skill of this hybrid model is significant, we retain this rectangle, otherwise we discard it. By
doing this, the selected rectangles are important to predict TC frequency in different clusters. The predictors
and domains for each cluster are shown in Figure 14 and listed in Table 2.

The spatial domains for each variable are justified in terms of physical mechanisms by previous studies. We
select three regions for SST related to cluster 1 (Figure 14). The two regions in the North Pacific are associ-
ated with the western part of the El Ni~no Southern Oscillation (ENSO) or the Pacific Decadal Oscillation
(PDO) [Wang and Chan, 2002; Camargo and Sobel, 2005; Zhang et al., 2013e] while the region in the
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Figure 15. Correlation and RMSE values of observed TC frequency and hybrid-model initialized from January to July for each cluster by leave-one-out cross validation. (top) The thick-
dashed black line represents the 0.05 level of significance.
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Southwestern Pacific is relevant to the SST gradient between the southwestern Pacific and the western
Pacific warm pool reported in Zhan et al. [2013] (Figure 14). Two regions for SST related to cluster 2 are
located in the tropical Pacific (La Ni~na-like pattern) [Wang and Chan, 2002; Camargo and Sobel, 2005] and
North Atlantic [Li et al., 2013; Huo et al., 2015; Yu et al., 2015]. The SST region related to cluster 3 is located in
the North Atlantic with the spatial pattern similar to the Atlantic tripole mode [Deser and Timlin, 1997],
although the correlations in the tropical Atlantic are not statistically significant. The association between
the Atlantic tripole mode and WNP TC activity could be supported by previous studies [Li et al., 2013; Huo
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Figure 16. Correlation and RMSE of observed and hind-casted WNP TC frequency produced by the hybrid model after leave-one-out cross
validation. The red circles denote the predictions of WNP TC frequency in each year using the hybrid model, while the black solid lines rep-
resent the observations. The pink areas represent the 10% and 90% percentiles of 1000 random sampling of TC frequency given m (the
predicted mean TC frequency) under Poisson distribution.
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et al., 2015; Yu et al., 2015]. The Atlantic
Meridional Mode strongly modulates
WNP TC activity in both observations
and a suite of FLOR-FA experiments;
negative (positive) AMM phases are con-
ducive to more (less) WNP TCs [Zhang
et al., 2016c].The correlation between
Atlantic tripole mode index and Atlantic
Meridional Mode index is significant at
0.01 level (value of 0.75) for the period
1961–2013 in the observations. This sug-
gests the strong modulation of the

Atlantic tripole mode on cluster 3. The SST regions in clusters 4 and 5 are located in the North Pacific, South-
western Pacific, Indian Ocean, and North Atlantic while the region for Z500 [Chan et al., 2001; Li et al., 2013]
is located in the WNP. It is noted that the spatial correlation maps of SST and Z500 with WNP TC frequency
are nearly opposite to one another for clusters 4 and 5 (Figure 14), reflecting different phases of the climate
oscillation (e.g., ENSO and AMM). The SST, Z500, and VWS [Chan et al., 2001; Li et al., 2013] domains of clus-
ter 6 are typical of El Ni~no years [Wang and Chan, 2002; Camargo and Sobel, 2005], concurrent with SST
regions in the Indian ocean [e.g., Wang et al., 2013; Zhan et al, 2013] and North Atlantic [Li et al., 2013; Huo
et al., 2015; Yu et al., 2015]. TC geneses in cluster 6 (Figure 10) are located southeast of those in cluster 4,
consistent with the southeast-northwest pattern of TC genesis during El Ni~no/La Ni~na years [Wang and
Chan, 2002; Camargo and Sobel, 2005]. The SST domain of cluster 7 bears strong resemblance to El Ni~no
with significant regions more confined in the Pacific (Figure 14). Therefore, the spatial SST domains of the
seven clusters are related to ENSO/PDO, the SST gradient between Southwestern Pacific and warm pool,
North Atlantic warming (cooling), the Atlantic tripole mode, the Atlantic Meridional Mode and Indian Ocean
SST anomalies, which strongly modulate WNP TC activity based on the literature. Moreover, the domains for
Z500 and VWS in the WNP have been widely used to make seasonal forecasting of WNP TCs [e.g., Chan
et al., 2001; Li et al., 2013; Wang et al., 2013].

Poisson regression models, which regress the observed WNP TC frequency in each cluster to the predictors,
show promising results after leave-one-out cross validation compared to dynamic predictions based on
FLOR-FA (Figure 15). The correlation produced by the hybrid models (i.e., combining Poisson regression and
FLOR-FA) is higher than those by FLOR-FA alone (Figure 7) in almost all clusters and initialization months.
Similarly, the RSME produced by the hybrid models is lower than those by FLOR-FA. For example, the RSME
values of clusters 1 and 7 in the hybrid models are smaller than 1 while those in FLOR-FA are larger than 1.5.
This indicates that the hybrid model outperforms FLOR-FA in predicting WNP TC frequency in each cluster.

The equations for the hybrid models built by Poisson regression in the January initialization month are
shown in Table 3 and those initialized in February months are provided in supporting information Tables
S1–S5. The predicted total WNP TC frequency is obtained by summing up predicted TC frequency in each
cluster. Figure 13 shows that the approach based on hybrid models can lead to skillful predictions for total
WNP TC frequency. The correlations between the observed and predicted WNP TC frequencies in the hybrid
model are higher than FLOR-FA when initialized in March, April, May, June, and July (Figures 2 and 16). The
correlations in the hybrid model are, however, lower than FLOR-FA initialized in January and February
(Figures 2 and 16). The RSME values in the hybrid models are lower than FLOR-FA except when initialized in
January and February (Figures 2 and 16). Therefore, the hybrid model, in general, outperforms FLOR-FA in
predicting total WNP TC frequency. The predictive skill of WNP TC frequency for different clusters with
FLOR-FA initialized in July is better than that initialized in January (Figure 12a). When we build hybrid mod-
els for each cluster, the performance of the hybrid models is still influenced by the results with FLOR-FA for
different clusters as shown in Figure 12a. After we combine the hybrid models for each cluster, the

Table 3. The Equations for the Hybrid Model of Clusters Initialized in
Januarya

Equations Initialized in January

Cluster 1 li1 5 exp(20.5725 1 3.4985�SSTi)
Cluster 2 li2 5 exp(1.5464 1 0.4045�SSTi)
Cluster 3 li3 5 exp(1.4159 1 0.9178�SSTi)
Cluster 4 li4 5 exp(1.1724 11.4646�SSTi 2 0.0044�Z500i)
Cluster 5 li5 5 exp(0.3453 1 6.8851�SSTi 2 0.0244�Z500i)
Cluster 6 li6 5 exp(0.5332 1 1.8980�SSTi 2 0.0029�Z500i 2 1.0555�VWSi)
Cluster 7 li7 5 exp(20.1035 1 2.1759�SSTi)

aThe parameter li1 represents the estimated TC frequency in cluster 1 in
the ith year, and the others are defined likewise.

Table 4. Landfall Rate Over East Asia for Each of the Seven Clusters (i.e., C1–7) in FLOR-FA and Observations Combined

East Asia C1 C2 C3 C4 C5 C6 C7

Landfall rate 0.23 0.55 0.82 0.79 0.37 0.25 0.93
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predictive skill of the combined hybrid model initialized in January is thus lower than that initialized in July
(Figures 2 and 16).
3.2.3. Prediction of TC Landfall Over East Asia
The prediction of landfall frequency over East Asia can be obtained by summing up the landfall frequency
over East Asia for the seven clusters. The landfall rate (s) over East Asia (Figure 1) for each cluster is summar-
ized in Table 4. Cluster 7 has the highest landfall rate (0.93), followed by cluster 3 with a landfall rate of 0.82.
Cluster 1 has a landfall rate of 0.23, which is the lowest among the seven clusters (Table 4).

Figure 17 shows the prediction of TC landfall over East Asia initialized from January to July. The correlation
coefficients between predicted and observed TC landfall range from 0.31 initialized in February to 0.73

1980 1985 1990 1995 2000 2005 2010
0

5

10

15

20

Year

T
C

 L
an

df
al

l F
re

qu
en

cy

COR = 0.42
RMSE = 2.22

(a)Predicted TC Landfall over East Asia initilized in Jan

1980 1985 1990 1995 2000 2005 2010
0

5

10

15

20

Year

T
C

 L
an

df
al

l F
re

qu
en

cy

COR = 0.31
RMSE = 2.34

(b)Predicted TC Landfall over East Asia initilized in Feb

1980 1985 1990 1995 2000 2005 2010
0

5

10

15

20

Year

T
C

 L
an

df
al

l F
re

qu
en

cy

COR = 0.52
RMSE = 2.06

(c)Predicted TC Landfall over East Asia initilized in Mar

1980 1985 1990 1995 2000 2005 2010
0

5

10

15

20

Year

T
C

 L
an

df
al

l F
re

qu
en

cy

COR = 0.61
RMSE = 1.91

(d)Predicted TC Landfall over East Asia initilized in Apr

1980 1985 1990 1995 2000 2005 2010
0

5

10

15

20

Year

T
C

 L
an

df
al

l F
re

qu
en

cy

COR = 0.48
RMSE = 2.07

(e)Predicted TC Landfall over East Asia initilized in May

1980 1985 1990 1995 2000 2005 2010
0

5

10

15

20

Year

T
C

 L
an

df
al

l F
re

qu
en

cy

COR = 0.61
RMSE = 1.88

(f)Predicted TC Landfall over East Asia initilized in Jun

1980 1985 1990 1995 2000 2005 2010
0

5

10

15

20

Year

T
C

 L
an

df
al

l F
re

qu
en

cy

COR = 0.73
RMSE = 1.61

(g)Predicted TC Landfall over East Asia initilized in Jul
IBTrACS

Hybrid Model

Figure 17. Correlation and RMSE of observed and predicted TC landfall over East Asia produced by the hybrid model by leave-one-out
cross validation. The red circles denote the predicted frequency of TC landfall over East Asia in each year using the hybrid model, while
the black solid line represents the observations. The pink buffer zones depict the 10% and 90% percentiles of 1000 random sampling of
TC landfall frequency over East Asia given m (the predicted mean landfall TC frequency over East Asia) under Poisson distribution.
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initialized in July. The hybrid model performs well in forecasting TC landfall over East Asia in the 1997 and
1998 seasons, especially when initialized in July (Figure 17). The correlations between predicted and
observed frequency of TC landfall over East Asia in the hybrid model are statistically significant (the per-
formance of hybrid model initialized in February is a bit lower than the significance level.) and are higher
than those in FLOR-FA for all initialization months (Figure 18). Meanwhile, the RMSE values of the TC landfall
frequency over East Asia in the hybrid model fluctuate from 1.61 for initialization month July to 2.34 for initi-
alization month February (Figure 18). The predictions initialized in July are encouraging because the RSME
in the hybrid model of TC landfall over East Asia is 1.61 while that in FLOR-FA is 2.77 (Figure 16). The RSME
values for initialization months from January to July are smaller than those in FLOR-FA (Figure 18).

4. Discussion and Conclusions

Seasonal prediction of TC frequency and landfall has attracted considerable attention from the scientific
community. Dynamic models have proven to have high skill in making seasonal predictions of TC fre-
quency, even though systematic biases and uncertainties in these models can affect their forecasting skills.
Hybrid models, which are based on the combination of statistical relationships and dynamical models, have
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shown promising potential to outperform both statistical and dynamic model predictions [e.g., Vecchi et al.,
2010, 2013, 2014; Villarini and Vecchi, 2013; Li et al., 2013]. This study, for the first time, builds a hybrid model
for seasonal forecasting of WNP TC frequency and landfall over East Asia by combining cluster analysis
results and the retrospective ensemble predictions (hindcasts) of GFDL FLOR-FA with promising perform-
ance that outperforms both purely statistical model and dynamic models.

Cluster analysis is taken as the first and one of the most important steps in data processing because it
groups the objects (i.e., TCs) exhibiting similarities into the same cluster, and lays the foundation for further
data analysis. This study takes advantage of cluster analysis to unravel typical patterns (i.e., clusters) from
historical and simulated TC tracks; this information is then used to predict total WNP TC frequency and land-
fall over East Asia.

This study has applied FMM-based cluster analysis to TC tracks in the WNP produced by FLOR-FA and obser-
vations. In total, we identified seven clusters, with three straight-moving and four recurving clusters. Build-
ing prediction schemes for each cluster using Poisson regression models allow the prediction of total WNP
TC frequency and landfall over East Asia in a rigorous probabilistic framework. The predictions of total WNP
TC frequency and TC landfall over East Asia based on cluster analysis results and Poisson regression shows
promising capability.

Our research findings can be summarized as follows.

1. Using the FMM-based cluster analysis, seven clusters are identified from the historical and FLOR-FA-
predicted TC tracks for the period 1980–2013. FLOR-FA has significant skill in predicting year-to-year var-
iations in the frequency of TCs within certain clusters (i.e., clusters 1 and 5).

2. By building Poisson regression models for each cluster using key predictors (i.e., SST, Z500, and VWS), the
predictive skill for almost all the clusters at all initialization months improves with respect to the dynamic
predictions. The prediction of total WNP TC frequency made by combining hybrid predictions for each of
the seven clusters in the hybrid model shows skill higher than what achieved using the TC frequency
directly from FLOR-FA initialized from March to July. However, the hybrid predictions initialized from Jan-
uary to February exhibit lower skill than FLOR-FA.

3. The prediction of TC landfall over East Asia made by combining the landfall rate over East Asia and the
hybrid models for TC frequency in each cluster also outperforms FLOR-FA for all start months January
through July.

This study has shown that cluster analysis is capable of unraveling hidden and useful patterns within TC
tracks, which are highly useful to improve the prediction of total WNP TC frequency and TC landfall over
East Asia. H.-S. Kim et al. [2012] have also used cluster analysis results to predict TC density in the WNP,
though their model is purely statistical. FLOR-FA has some biases in TC density in the WNP, as shown in this
study and Vecchi et al. [2014]. The biases have been substantially improved in the present control (1990)
and SST-nudging experiments with a recently developed 25 km mesh GFDL climate model (HiFLOR) [Mura-
kami et al., 2015; Zhang et al., 2016b]. Our future work will examine whether HiFLOR produces better sea-
sonal forecasts in the track, genesis, and landfall of WNP TCs within a statistical-dynamical framework.
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